Observation of Topological Anderson \& Floquet Insulators

Pietro Massignan

UNIVERSITAT POLITÈCNICA
DE CATALUNYA
barcelonatech

ICFO ${ }^{\text { }}$
The Institute of Photonic Sciences

SLAM group

1D chiral systems

polyacetilene
[Nobel prize in Chemistry 2000]

cavity polaritons
[St. Jean et al., Nature Phot. 2017]

ultracold atoms
in superlattices
[M. Atala et al., Nature Phys. 2013]

ultracold atoms in k-space lattices
[Meier et al., Nature Comm. 2016]

optical waveguides
[Zeuner et al., PRL 2015]

SC qubits

in mw-cavities
[Flurin et al., PRX 2017]

SSH model

- Spinless fermions with staggered tunnelings:

- \exists two sublattices

ョ a "canonical basis" where H is purely off-diag: $\quad H=\left(\begin{array}{cc}0 & h^{\dagger} \\ h & 0\end{array}\right)$

- Chiral symmetry: $\Gamma H \Gamma=-H$ (Γ : unitary, Hermitian, local)
- In momentum space: $H_{k}=E_{k} \mathbf{n}_{k} \cdot \boldsymbol{\sigma}$
- In the canonical basis, $\mathbf{n}_{k} \perp \hat{\mathbf{z}} \quad \forall k \quad$ and $\quad \Gamma=\sigma_{z}$
- Winding:

The winding W

- \mathcal{W} may be calculated:

$$
H_{k}=E_{k} \mathbf{n}_{k} \cdot \boldsymbol{\sigma}
$$

- from $\mathrm{n}: \mathcal{W}=\oint \frac{\mathrm{d} k}{2 \pi}\left(\mathbf{n} \times \partial_{k} \mathbf{n}\right)_{z}$
- from the eigenstates: $\mathcal{W}=\oint \frac{\mathrm{d} k}{\pi} \mathcal{S}$, $\mathcal{S}=i\left\langle\psi_{+} \mid \partial_{k} \psi_{-}\right\rangle$
skew polarization
- What if the Hamiltonian is not known?

Can one measure the winding?

Yes, and it's simple!

Evolution in real time

- Initial condition localized on the $m=0$ cell:

- Mean Chiral Displacement: $\mathcal{C}(t) \equiv 2\langle\widehat{\Gamma m}(t)\rangle=2\left[\left\langle m_{A}(t)\right\rangle-\left\langle m_{B}(t)\right\rangle\right]$

$$
\mathcal{C}(t)=2 \int_{-\pi}^{\pi} \frac{\mathrm{d} k}{2 \pi}\left\langle U^{-t} \sigma_{z}\left(i \partial_{k}\right) U^{t}\right\rangle_{\psi_{0}}=2 \int_{-\pi}^{\pi} \frac{\mathrm{d} k}{2 \pi} \sin ^{2}(E t)\left|\mathbf{n} \times \partial_{k} \mathbf{n}\right| \xrightarrow{t \rightarrow \infty} \mathcal{W}
$$

$$
\mathcal{C} \quad w=\oint_{2 \pi}^{2 \pi}\left(\mathrm{n} \times \partial_{\mathrm{kn}}\right)_{3}
$$

- Bulk measurement
- Fast convergence

Cardano, Dauphin, ... \& PM
Nature Comm. (2017)

Resistance to disorder

SSH model in the topological phase

$$
j^{\prime}=2 j \quad \rightarrow\left\{\begin{array}{l}
\mathcal{W}=1 \\
\Delta_{\text {gap }}=2 j
\end{array}\right.
$$

independent disorder of amplitude Δ on all tunnelings

$$
\begin{gathered}
\text { localized initial condition (randomly-polarized) } \\
+\underset{\downarrow}{+} \text { (1000) disorder realizations } \\
\text { average over } 50
\end{gathered}
$$

the MCD stays locked to the topological invariant as long as $\Delta<\Delta_{\text {gap }}$

Higher windings

- Extension to long-ranged models:

- At critical boundaries: MCD converges to the mean of the winding in the neighboring phases

Atomic wires in Urbana

- Atomic, ~ideal BEC
- Laser-driven coupling of discrete-momentum states

$$
H_{\mathrm{eff}} \approx \sum_{j} t_{j}\left(e^{i \varphi_{j}}\left|\widetilde{\psi}_{j+1}\right\rangle\left\langle\widetilde{\psi}_{j}\right|+\text { h.c. }\right)
$$

- 1D Hubbard model with full control on each tunneling strength and phase
- Built-in chiral symmetry

Detecting topology

A topological wire becomes trivial by adding disorder

color map: real-space computation of the winding
red line: critical boundary (diverging localization length)
datapoints: experimental measurement of the MCD

Topological Anderson transition

A trivial wire is driven into the topological phase by adding disorder

disorder strength

Meier, An, Dauphin, Maffei, PM, Taylor and Gadway, arXiv:1802.02109

Discrete-Time Quantum Walks with twisted photons

- Cascade of Q-plates and quarter-wave plates W

$$
\hat{W}=\frac{1}{2}\left(\begin{array}{cc}
1 & -i \\
-i & 1
\end{array}\right)
$$

discrete-time QW	Twisted photons
walker's position	OAM (m)
coin state (\uparrow / \downarrow)	polarization (C / \bigcirc)
spin rotation	W-plate
conditional displacement	Q-plate
time	$\hat{\mathbf{z}}$

$$
\begin{aligned}
& \mathrm{P}_{\text {stay }}=\cos ^{2}(\delta / 2) \\
& \mathrm{P}_{\text {filp }}=\sin ^{2}(\delta / 2)
\end{aligned}
$$

Discrete-Time Quantum Walk

- Periodic evolution: may be treated via Floquet theory
- One-step evolution operator $U \quad \rightarrow \quad H_{\text {eff }} \equiv \frac{i}{T} \log U$
- In momentum space: $H_{\text {eff }}(k)=E_{k} \hat{\mathbf{n}}_{k} \cdot \boldsymbol{\sigma}$
- The spectrum of $H_{\text {eff }}$ is 2π-periodic (quasi-energies E_{k})
- T+C+S symmetries: BDI class $->$ same invariant as the static SSH model

Detecting the invariant

- Winding: $\mathcal{W}=\oint \frac{\mathrm{d} k}{2 \pi}\left(\mathbf{n} \times \partial_{k} \mathbf{n}\right)_{z}$

- Experimental measurement of the MCD after 7 timesteps of the DTQW with twisted photons:
(॰/॰): different initial polarizations
- Check bulk-boundary correspondence
- Spectrum with edges:
darker colors: "edgier" states
- Bulk-boundary correspondence violated?

Timeframes

- Different initial t_{0} lead to different U
- Eigenvalues of $H_{\text {eff }}$ don't depend on t_{0}

- Eigenstates instead do! And so does the winding: $\mathcal{W}=\mathcal{W}_{1} \neq \mathcal{W}_{2}$
- Timeframes invariant under time-reflection (U_{1} and U_{2}) are special
- \# of 0-energy edge states: $C_{0}=\left(\mathcal{W}_{1}+\mathcal{W}_{2}\right) / 2$
- \# of π-energy edge states: $C_{\pi}=\left(\mathcal{W}_{1}-\mathcal{W}_{2}\right) / 2$

Recovering the bulk-boundary correspondence

Measurement of the MCD in an alternative timeframe:

(॰/८): different initial polarizations

Spectrum (theory):

Measurements of C_{0} and C_{π} :

Complete topological characterization of a Floquet topological insulator

