Observation of Topological Anderson & Floquet Insulators

Pietro Massignan

1D chiral systems

polyacetilene [Nobel prize in Chemistry 2000]

ultracold atoms in superlattices [M. Atala *et al.*, Nature Phys. 2013]

[Zeuner *et al.*, PRL 2015]

Cavity polaritons [St. Jean *et al.*, Nature Phot. 2017]

 $t-\Delta \quad t+\Delta \quad t-\Delta \quad t+\Delta \quad t-\Delta \quad t-\Delta \quad t+\Delta \quad t-\Delta \quad t+\Delta \quad t-\Delta$

ultracold atoms in k-space lattices [Meier *et al.*, Nature Comm. 2016]

SC qubits in mw-cavities [Flurin *et al.*, PRX 2017]

SSH model

Spinless fermions with staggered tunnelings:

Su, Schrieffer & Heeger Phys. Rev. Lett. (1979)

Asbóth, Oroszlány, & Pályi Lecture Notes in Physics (2016)

• \exists two sublattices \exists a "canonical basis" where *H* is purely off-diag: $H = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

$$I = \left(\begin{array}{cc} 0 & h^{\dagger} \\ h & 0 \end{array}\right)$$

- Chiral symmetry: $\Gamma H \Gamma = -H$ (Γ : unitary, Hermitian, local)
- In momentum space: $H_k = E_k \mathbf{n}_k \cdot \boldsymbol{\sigma}$
- In the canonical basis, $\mathbf{n}_k \perp \hat{\mathbf{z}}$ $\forall k$ and $\Gamma = \sigma_z$
- Winding:

The winding W

• $\ensuremath{\mathcal{W}}$ may be calculated:

• from n:
$$\mathcal{W} = \oint \frac{\mathrm{d}k}{2\pi} \left(\mathbf{n} \times \partial_k \mathbf{n}\right)_z$$

• from the *eigenstates*: $W = \oint \frac{\mathrm{d}k}{\pi} S$,

 $H_k = E_k \mathbf{n}_k \cdot \boldsymbol{\sigma}$

$$\mathcal{S} = i \langle \psi_+ | \partial_k \psi_- \rangle$$

skew polarization

What if the Hamiltonian is not known?
Can one *measure* the winding?

Yes, and it's simple!

Evolution in real time

Initial condition
localized on the m=0 cell:

• Mean Chiral Displacement: $C(t) \equiv 2\langle \widehat{\Gamma m}(t) \rangle = 2 \left| \langle m_A(t) \rangle - \langle m_B(t) \rangle \right|$

$$\mathcal{C}(t) = 2 \int_{-\pi}^{\pi} \frac{\mathrm{d}k}{2\pi} \left\langle U^{-t} \sigma_z(i\partial_k) U^t \right\rangle_{\psi_0} = 2 \int_{-\pi}^{\pi} \frac{\mathrm{d}k}{2\pi} \sin^2(Et) \left| \mathbf{n} \times \partial_k \mathbf{n} \right| \quad \xrightarrow{t \to \infty} \quad \mathcal{W}$$

Fast convergence

Cardano, Dauphin, ... & PM Nature Comm. (2017)

Resistance to disorder

the MCD stays locked to the topological invariant as long as $\Delta{<}\Delta_{\rm gap}$

Higher windings

• Extension to long-ranged models:

 At critical boundaries: MCD converges to the mean of the winding in the neighboring phases

> Maffei, Dauphin, Cardano, Lewenstein & PM New J. Phys. 2018

Atomic wires in Urbana

• Atomic, ~ideal BEC

 $t_{\scriptscriptstyle 0} e^{i arphi_0}$

 $t_1 e^{i\varphi}$

 Laser-driven coupling of discrete-momentum states

$$H_{\text{eff}} \approx \sum_{j} t_j (e^{i\varphi_j} |\tilde{\psi}_{j+1}\rangle \langle \tilde{\psi}_j | + \text{h.c.})$$

- 1D Hubbard model with full control on each tunneling strength and phase
- Built-in chiral symmetry

Detecting topology

A topological wire becomes trivial by adding disorder

color map: real-space computation of the winding

red line: critical boundary (diverging localization length)

datapoints: experimental measurement of the MCD

Topological Anderson transition

A trivial wire is driven into the topological phase by adding disorder

disorder strength

Meier, An, Dauphin, Maffei, PM, Taylor and Gadway, arXiv:1802.02109

Discrete-Time Quantum Walks with twisted photons

Cascade of Q-plates and quarter-wave plates W

discrete-time QW	Twisted photons
walker's position	OAM (<i>m</i>)
coin state (↑/↓)	polarization (C/O)
spin rotation	W-plate
conditional displacement	Q-plate
time	$\hat{\mathbf{Z}}$

 $\hat{W} = \frac{1}{2} \left(\begin{array}{cc} 1 & -i \\ -i & 1 \end{array} \right)$

[Cardano et al., Science Advances (2015)]

Discrete-Time Quantum Walk

- Periodic evolution: may be treated via Floquet theory
- One-step evolution operator $U \rightarrow H_{eff} \equiv \frac{i}{T} \log U$
- In momentum space: $H_{\text{eff}}(k) = E_k \hat{\mathbf{n}}_k \cdot \boldsymbol{\sigma}$
- The spectrum of H_{eff} is 2π -periodic (quasi-energies E_k)
- T+C+S symmetries: BDI class —> same invariant as the static SSH model

Cardano, D'Errico, Dauphin, Maffei, ... Marrucci, Lewenstein & PM Nature Comm. (2017)

Detecting the invariant

z

• Winding:
$$\mathcal{W} = \oint \frac{\mathrm{d}k}{2\pi} \left(\mathbf{n} \times \partial_k \mathbf{n}\right)$$

 Experimental measurement of the MCD after 7 timesteps of the DTQW with twisted photons:

 (\bullet/\bullet) : different initial polarizations

- Check bulk-boundary correspondence
- Spectrum with edges:

- darker colors: "edgier" states
- Bulk-boundary correspondence violated?

Timeframes

- Different initial t_0 lead to different U
- Eigenvalues of H_{eff} don't depend on t_0
- Eigenstates instead do! And so does the winding: $\mathcal{W} = \mathcal{W}_1 \neq \mathcal{W}_2$
- Timeframes invariant under time-reflection (U_1 and U_2) are special
- # of 0-energy edge states: $C_0 = (W_1 + W_2)/2$
- # of π -energy edge states: $C_{\pi} = (\mathcal{W}_1 \mathcal{W}_2)/2$

Recovering the bulk-boundary correspondence

Measurement of the MCD in an alternative timeframe:

(•/•): different initial polarizations = 7t = 33 $--t = \infty$ $\tilde{\mathcal{O}}$ $\frac{\pi}{2}$ 3π 2π () π 2 δ $\sqrt{Q_{\delta}} = Q_{\delta/2}$ а 0 Ē Spectrum (theory): b Measurements of C_0 and C_{π} : C_0 and C_π 0.5Complete topological characterization of a Floquet topological insulator $\frac{\pi}{2}$ 3π 2π 0 2